
Double Dispatch / Inheritance: Rock, Paper, Scissors Example

Write three classes, Rock, Paper and Scissors. They can all add a RPSObject mixin or be
subclasses of some superclass, but that isn’t necessary for this example.

OOP Approach: The client code should be able to call “a.fights(b)” for some arbitrary R/P/S
objects a and b (without necessarily knowing whether the objects a and b are rocks, papers or
scissors). Implement this functionality using double dispatch.
(Hint: you should be adding 12 methods, 4 per class.)

(this topic (double dispatch) won’t be on the final. To avoid possible
confusion, send us an email if you are curious)

Functional Approach: Now implement this using a functional programming approach.

Solution:

- OOP: Add a “fights(other)” method, as well as “fightsRock(rock)”,
“fightsPaper(paper)”, and “fightsScissors(scissors)” methods to each of the three
classes (total of 12 methods). The fights(other) method in class X should call
other.fightsX(self). Within each fightsX(obj) method, the correct string can be
returned.

- Functional: Some if/else logic to check the types of the two objects (if a is_a X and b is_a
Y then “win” etc). Each fights method can call the static method with self and obj, or just
do the type checking on the other object within its fights method.

class RPSObject
end

class Rock < RPSObject

 def fight other
 other.fightRock
 end

 def fightRock
 "tie"
 end

 def fightPaper
 "win"

 end

 def fightScissors
 "lose"
 end

 def to_s
 "Rock"
 end

end

class Paper < RPSObject

 def fight other
 other.fightPaper
 end

 def fightRock
 "lose"
 end

 def fightPaper
 "tie"
 end

 def fightScissors
 "win"
 end

 def to_s
 "Paper"
 end

end

class Scissors < RPSObject
 def fight other
 other.fightScissors
 end

 def fightRock
 "win"

 end

 def fightPaper
 "lose"
 end

 def fightScissors
 "tie"
 end

 def to_s
 "Scissors"
 end
end

Testing
a = [Rock.new, Paper.new, Scissors.new]
a.combination(2).to_a.each { |a,b| puts (a.fight b) }

Class and Mixins and Coerce:
1: implement Comparable and override compareTo method
2: include Comparable and define the method <=>
3: (this is really a bad example, read Ruby’s Enumerable class for more information)
def <=> other

return @nume * other.deno <=> other.nume * @deno
end

1: It means we can take element one by one from the object, like using a for-each loop
2: In Java, it’s more close to iterable. By implement iterable
3: include Enumerable and define the method each
4:
def each

yield @nume
yield @deno

end

1: coerce means using dispatch to convert an object to the one that supports such operation
2:
def coerce n

return [PosRational.new(n), this]
end

3: (not important) coerce cannot apply to things other than operators
Extra: Java does not allow operator overload

Extra practice questions:
1:
def min

minimum = nil
each {|x| minimum = x if minimum.nil? or x < minimum}
min

end

2:
def min2

first = nil
second = nil
each {|x| first = x if first.nil? or x < first}
each {|x| second = x if second.nil? and x > first or x > first

and x < second}
second

end

